NumPy proposes a way to get the index of the maximum value of an array via np.argmax
.
I would like a similar thing, but returning the indexes of the
Method np.argpartition
only returns the k largest indices, performs a local sort, and is faster than np.argsort
(performing a full sort) when array is quite large. But the returned indices are NOT in ascending/descending order. Let's say with an example:
We can see that if you want a strict ascending order top k indices, np.argpartition
won't return what you want.
Apart from doing a sort manually after np.argpartition, my solution is to use PyTorch, torch.topk, a tool for neural network construction, providing NumPy-like APIs with both CPU and GPU support. It's as fast as NumPy with MKL, and offers a GPU boost if you need large matrix/vector calculations.
Strict ascend/descend top k indices code will be:
Note that torch.topk accepts a torch tensor, and returns both top k values and top k indices in type torch.Tensor
. Similar with np, torch.topk also accepts an axis argument so that you can handle multi-dimensional arrays/tensors.