I am trying to write a C++ program that takes the following inputs from the user to construct rectangles (between 2 and 5): height, width, x-pos, y-pos. All of these rectang
This is a very fast way to check with C++ if two rectangles overlap:
return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
&& std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);
It works by calculating the left and right borders of the intersecting rectangle, and then comparing them: if the right border is equal to or less than the left border, it means that the intersection is empty and therefore the rectangles do not overlap; otherwise, it tries again with the top and bottom borders.
What is the advantage of this method over the conventional alternative of 4 comparisons? It's about how modern processors are designed. They have something called branch prediction, which works well when the result of a comparison is always the same, but have a huge performance penalty otherwise. However, in the absence of branch instructions, the CPU performs quite well. By calculating the borders of the intersection instead of having two separate checks for each axis, we're saving two branches, one per pair.
It is possible that the four comparisons method outperforms this one, if the first comparison has a high chance of being false. That is very rare, though, because it means that the second rectangle is most often on the left side of the first rectangle, and not on the right side or overlapping it; and most often, you need to check rectangles on both sides of the first one, which normally voids the advantages of branch prediction.
This method can be improved even more, depending on the expected distribution of rectangles:
return std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom)
&& std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right);
return std::max(rectA.left, rectB.left) < std::min(rectA.right, rectB.right)
& std::max(rectA.top, rectB.top) < std::min(rectA.bottom, rectB.bottom);
(Note the change of &&
to a single &
)