I have a long list of lists of integers (representing sentences, each one of different sizes) that I want to feed using the tf.data library. Each list (of the lists of list)
You can use tf.data.Dataset.from_generator() to convert any iterable Python object (like a list of lists) into a Dataset:
t = [[4, 2], [3, 4, 5]]
dataset = tf.data.Dataset.from_generator(lambda: t, tf.int32, output_shapes=[None])
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
print(sess.run(next_element)) # ==> '[4, 2]'
print(sess.run(next_element)) # ==> '[3, 4, 5]'