In C++ you can create templates using a non-type template parameter like this:
template< int I >
void add( int& value )
{
value += I;
}
int main
In that particular instance, there's not really any advantage. But using template parameters like that, you can do a lot of things you couldn't do otherwise, like effectively bind variables to functions (like boost::bind), specify the size of a compile-time array in a function or class (std::array being a ready example of that), etc.
For instance, with that function, you write a function like
template
void apply(T f) {
f(somenum);
}
Then you can pass apply a function:
apply(&add<23>);
That's an extremely simple example, but it demonstrates the principle. More advanced applications include applying functions to every value in a collection, calculating things like the factorial of a function at compile time, and more.
You couldn't do any of that any other way.