I'm a recovering IOC addict. I'm finding it hard to justify using IOC for DI in most cases these days. IOC containers sacrifice compile time checking and supposedly in return give you "easy" setup, complex lifetime management and on the fly discovering of dependencies at run time. I find the loss of compile time checking and resulting run time magic/exceptions, is not worth the bells and whistles in the vast majority of cases. In large enterprise applications they can make it very difficult to follow what is going on.
I don't buy the centralization argument because you can centralize static setup very easily as well by using an abstract factory for your application and religiously deferring object creation to the abstract factory i.e. do proper DI.
Why not do static magic-free DI like this:
interface IServiceA { }
interface IServiceB { }
class ServiceA : IServiceA { }
class ServiceB : IServiceB { }
class StubServiceA : IServiceA { }
class StubServiceB : IServiceB { }
interface IRoot { IMiddle Middle { get; set; } }
interface IMiddle { ILeaf Leaf { get; set; } }
interface ILeaf { }
class Root : IRoot
{
public IMiddle Middle { get; set; }
public Root(IMiddle middle)
{
Middle = middle;
}
}
class Middle : IMiddle
{
public ILeaf Leaf { get; set; }
public Middle(ILeaf leaf)
{
Leaf = leaf;
}
}
class Leaf : ILeaf
{
IServiceA ServiceA { get; set; }
IServiceB ServiceB { get; set; }
public Leaf(IServiceA serviceA, IServiceB serviceB)
{
ServiceA = serviceA;
ServiceB = serviceB;
}
}
interface IApplicationFactory
{
IRoot CreateRoot();
}
abstract class ApplicationAbstractFactory : IApplicationFactory
{
protected abstract IServiceA ServiceA { get; }
protected abstract IServiceB ServiceB { get; }
protected IMiddle CreateMiddle()
{
return new Middle(CreateLeaf());
}
protected ILeaf CreateLeaf()
{
return new Leaf(ServiceA,ServiceB);
}
public IRoot CreateRoot()
{
return new Root(CreateMiddle());
}
}
class ProductionApplication : ApplicationAbstractFactory
{
protected override IServiceA ServiceA
{
get { return new ServiceA(); }
}
protected override IServiceB ServiceB
{
get { return new ServiceB(); }
}
}
class FunctionalTestsApplication : ApplicationAbstractFactory
{
protected override IServiceA ServiceA
{
get { return new StubServiceA(); }
}
protected override IServiceB ServiceB
{
get { return new StubServiceB(); }
}
}
namespace ConsoleApplication5
{
class Program
{
static void Main(string[] args)
{
var factory = new ProductionApplication();
var root = factory.CreateRoot();
}
}
//[TestFixture]
class FunctionalTests
{
//[Test]
public void Test()
{
var factory = new FunctionalTestsApplication();
var root = factory.CreateRoot();
}
}
}
Your container configuration is your abstract factory implementation, your registrations are implementations of abstract members.
If you need a new singleton dependency, just add another abstract property to the abstract factory. If you need a transient dependency, just add another method and inject it as a Func<>.
Advantages:
- All setup and object creation configuration is centralized .
- Configuration is just code
- Compile time checking makes it easy to maintain as you cannot forget to update your registrations.
- No run-time reflection magic
I recommend sceptics to give it a go next green field project and honestly ask yourself at which point you need the container. It's easy to factor in an IOC container later on as you're just replacing a factory implementation with a IOC Container configuration module.