R Version 2.11.1 32-bit on Windows 7
I got two data sets: data_A and data_B:
USER_A USER_B ACTION
1 11 0.3
1 13 0.
This sort of thing is quite easy to do with a database-like operation. Here I use package sqldf to do a left (outer) join and then summarise the resulting object:
require(sqldf)
tmp <- sqldf("select * from data_A left join data_B using (USER_A, USER_B)")
This results in:
> tmp
USER_A USER_B ACTION ACTION
1 1 11 0.30 NA
2 1 13 0.25 0.17
3 1 16 0.63 NA
4 1 17 0.26 NA
5 2 11 0.14 0.25
6 2 14 0.28 NA
Now we just need sum the two ACTION columns:
data_C <- transform(data_A, ACTION = rowSums(tmp[, 3:4], na.rm = TRUE))
Which gives the desired result:
> data_C
USER_A USER_B ACTION
1 1 11 0.30
2 1 13 0.42
3 1 16 0.63
4 1 17 0.26
5 2 11 0.39
6 2 14 0.28
This can be done using standard R function merge:
> merge(data_A, data_B, by = c("USER_A","USER_B"), all.x = TRUE)
USER_A USER_B ACTION.x ACTION.y
1 1 11 0.30 NA
2 1 13 0.25 0.17
3 1 16 0.63 NA
4 1 17 0.26 NA
5 2 11 0.14 0.25
6 2 14 0.28 NA
So we can replace the sqldf() call above with:
tmp <- merge(data_A, data_B, by = c("USER_A","USER_B"), all.x = TRUE)
whilst the second line using transform() remains the same.