I\'d like to perform some basic stemming on a Spark Dataframe column by replacing substrings. What\'s the quickest way to do this?
In my current use case, I have a
For Spark 1.5 or later, you can use the functions package:
from pyspark.sql.functions import *
newDf = df.withColumn('address', regexp_replace('address', 'lane', 'ln'))
Quick explanation:
withColumn is called to add (or replace, if the name exists) a column to the data frame. regexp_replace will generate a new column by replacing all substrings that match the pattern.