I know there are many questions here in SO about ways to convert a list of data.frames to a single data.frame using do.call or ldply, but this questions is about understandi
rbind.data.frame does a lot of checking you don't need. This should be a pretty quick transformation if you only do exactly what you want.
# Use data from Josh O'Brien's post.
set.seed(21)
X <- replicate(50000, data.frame(a=rnorm(5), b=1:5), simplify=FALSE)
system.time({
Names <- names(X[[1]]) # Get data.frame names from first list element.
# For each name, extract its values from each data.frame in the list.
# This provides a list with an element for each name.
Xb <- lapply(Names, function(x) unlist(lapply(X, `[[`, x)))
names(Xb) <- Names # Give Xb the correct names.
Xb.df <- as.data.frame(Xb) # Convert Xb to a data.frame.
})
# user system elapsed
# 3.356 0.024 3.388
system.time(X1 <- do.call(rbind, X))
# user system elapsed
# 169.627 6.680 179.675
identical(X1,Xb.df)
# [1] TRUE
Inspired by the data.table answer, I decided to try and make this even faster. Here's my updated solution, to try and keep the check mark. ;-)
# My "rbind list" function
rbl.ju <- function(x) {
u <- unlist(x, recursive=FALSE)
n <- names(u)
un <- unique(n)
l <- lapply(un, function(N) unlist(u[N==n], FALSE, FALSE))
names(l) <- un
d <- as.data.frame(l)
}
# simple wrapper to rbindlist that returns a data.frame
rbl.dt <- function(x) {
as.data.frame(rbindlist(x))
}
library(data.table)
if(packageVersion("data.table") >= '1.8.2') {
system.time(dt <- rbl.dt(X)) # rbindlist only exists in recent versions
}
# user system elapsed
# 0.02 0.00 0.02
system.time(ju <- rbl.ju(X))
# user system elapsed
# 0.05 0.00 0.05
identical(dt,ju)
# [1] TRUE