Concatenate two PySpark dataframes

后端 未结 10 1352
独厮守ぢ
独厮守ぢ 2020-12-02 16:28

I\'m trying to concatenate two PySpark dataframes with some columns that are only on each of them:

from pyspark.sql.functions import randn, rand

df_1 = sqlC         


        
10条回答
  •  攒了一身酷
    2020-12-02 17:00

    Here is one way to do it, in case it is still useful: I ran this in pyspark shell, Python version 2.7.12 and my Spark install was version 2.0.1.

    PS: I guess you meant to use different seeds for the df_1 df_2 and the code below reflects that.

    from pyspark.sql.types import FloatType
    from pyspark.sql.functions import randn, rand
    import pyspark.sql.functions as F
    
    df_1 = sqlContext.range(0, 10)
    df_2 = sqlContext.range(11, 20)
    df_1 = df_1.select("id", rand(seed=10).alias("uniform"), randn(seed=27).alias("normal"))
    df_2 = df_2.select("id", rand(seed=11).alias("uniform"), randn(seed=28).alias("normal_2"))
    
    def get_uniform(df1_uniform, df2_uniform):
        if df1_uniform:
            return df1_uniform
        if df2_uniform:
            return df2_uniform
    
    u_get_uniform = F.udf(get_uniform, FloatType())
    
    df_3 = df_1.join(df_2, on = "id", how = 'outer').select("id", u_get_uniform(df_1["uniform"], df_2["uniform"]).alias("uniform"), "normal", "normal_2").orderBy(F.col("id"))
    

    Here are the outputs I get:

    df_1.show()
    +---+-------------------+--------------------+
    | id|            uniform|              normal|
    +---+-------------------+--------------------+
    |  0|0.41371264720975787|  0.5888539012978773|
    |  1| 0.7311719281896606|  0.8645537008427937|
    |  2| 0.1982919638208397| 0.06157382353970104|
    |  3|0.12714181165849525|  0.3623040918178586|
    |  4| 0.7604318153406678|-0.49575204523675975|
    |  5|0.12030715258495939|  1.0854146699817222|
    |  6|0.12131363910425985| -0.5284523629183004|
    |  7|0.44292918521277047| -0.4798519469521663|
    |  8| 0.8898784253886249| -0.8820294772950535|
    |  9|0.03650707717266999| -2.1591956435415334|
    +---+-------------------+--------------------+
    
    df_2.show()
    +---+-------------------+--------------------+
    | id|            uniform|            normal_2|
    +---+-------------------+--------------------+
    | 11| 0.1982919638208397| 0.06157382353970104|
    | 12|0.12714181165849525|  0.3623040918178586|
    | 13|0.12030715258495939|  1.0854146699817222|
    | 14|0.12131363910425985| -0.5284523629183004|
    | 15|0.44292918521277047| -0.4798519469521663|
    | 16| 0.8898784253886249| -0.8820294772950535|
    | 17| 0.2731073068483362|-0.15116027592854422|
    | 18| 0.7784518091224375| -0.3785563841011868|
    | 19|0.43776394586845413| 0.47700719174464357|
    +---+-------------------+--------------------+
    
    df_3.show()
    +---+-----------+--------------------+--------------------+                     
    | id|    uniform|              normal|            normal_2|
    +---+-----------+--------------------+--------------------+
    |  0| 0.41371265|  0.5888539012978773|                null|
    |  1|  0.7311719|  0.8645537008427937|                null|
    |  2| 0.19829196| 0.06157382353970104|                null|
    |  3| 0.12714182|  0.3623040918178586|                null|
    |  4|  0.7604318|-0.49575204523675975|                null|
    |  5|0.120307155|  1.0854146699817222|                null|
    |  6| 0.12131364| -0.5284523629183004|                null|
    |  7| 0.44292918| -0.4798519469521663|                null|
    |  8| 0.88987845| -0.8820294772950535|                null|
    |  9|0.036507078| -2.1591956435415334|                null|
    | 11| 0.19829196|                null| 0.06157382353970104|
    | 12| 0.12714182|                null|  0.3623040918178586|
    | 13|0.120307155|                null|  1.0854146699817222|
    | 14| 0.12131364|                null| -0.5284523629183004|
    | 15| 0.44292918|                null| -0.4798519469521663|
    | 16| 0.88987845|                null| -0.8820294772950535|
    | 17| 0.27310732|                null|-0.15116027592854422|
    | 18|  0.7784518|                null| -0.3785563841011868|
    | 19| 0.43776396|                null| 0.47700719174464357|
    +---+-----------+--------------------+--------------------+
    

提交回复
热议问题