In scipy, we can construct a sparse matrix using scipy.sparse.lil_matrix() etc. But the matrix is in 2d.
I am wondering if there is an existing data structure for sp
I also need 3D sparse matrix for solving the 2D heat equations (2 spatial dimensions are dense, but the time dimension is diagonal plus and minus one offdiagonal.) I found this link to guide me. The trick is to create an array Number that maps the 2D sparse matrix to a 1D linear vector. Then build the 2D matrix by building a list of data and indices. Later the Number matrix is used to arrange the answer back to a 2D array.
[edit] It occurred to me after my initial post, this could be handled better by using the .reshape(-1) method. After research, the reshape method is better than flatten because it returns a new view into the original array, but flatten copies the array. The code uses the original Number array. I will try to update later.[end edit]
I test it by creating a 1D random vector and solving for a second vector. Then multiply it by the sparse 2D matrix and I get the same result.
Note: I repeat this many times in a loop with exactly the same matrix M, so you might think it would be more efficient to solve for inverse(M). But the inverse of M is not sparse, so I think (but have not tested) using spsolve is a better solution. "Best" probably depends on how large the matrix is you are using.
#!/usr/bin/env python3
# testSparse.py
# profhuster
import numpy as np
import scipy.sparse as sM
import scipy.sparse.linalg as spLA
from array import array
from numpy.random import rand, seed
seed(101520)
nX = 4
nY = 3
r = 0.1
def loadSpNodes(nX, nY, r):
# Matrix to map 2D array of nodes to 1D array
Number = np.zeros((nY, nX), dtype=int)
# Map each element of the 2D array to a 1D array
iM = 0
for i in range(nX):
for j in range(nY):
Number[j, i] = iM
iM += 1
print(f"Number = \n{Number}")
# Now create a sparse matrix of the "stencil"
diagVal = 1 + 4 * r
offVal = -r
d_list = array('f')
i_list = array('i')
j_list = array('i')
# Loop over the 2D nodes matrix
for i in range(nX):
for j in range(nY):
# Recall the 1D number
iSparse = Number[j, i]
# populate the diagonal
d_list.append(diagVal)
i_list.append(iSparse)
j_list.append(iSparse)
# Now, for each rectangular neighbor, add the
# off-diagonal entries
# Use a try-except, so boundry nodes work
for (jj,ii) in ((j+1,i),(j-1,i),(j,i+1),(j,i-1)):
try:
iNeigh = Number[jj, ii]
if jj >= 0 and ii >=0:
d_list.append(offVal)
i_list.append(iSparse)
j_list.append(iNeigh)
except IndexError:
pass
spNodes = sM.coo_matrix((d_list, (i_list, j_list)), shape=(nX*nY,nX*nY))
return spNodes
MySpNodes = loadSpNodes(nX, nY, r)
print(f"Sparse Nodes = \n{MySpNodes.toarray()}")
b = rand(nX*nY)
print(f"b=\n{b}")
x = spLA.spsolve(MySpNodes.tocsr(), b)
print(f"x=\n{x}")
print(f"Multiply back together=\n{x * MySpNodes}")