I\'m working on a segmentation problem in Keras and I want to display segmentation results at the end of every training epoch.
I want something similar to Tensorflow
I believe I found a better way to log such custom images to tensorboard making use of the tf-matplotlib. Here is how...
class TensorBoardDTW(tf.keras.callbacks.TensorBoard):
def __init__(self, **kwargs):
super(TensorBoardDTW, self).__init__(**kwargs)
self.dtw_image_summary = None
def _make_histogram_ops(self, model):
super(TensorBoardDTW, self)._make_histogram_ops(model)
tf.summary.image('dtw-cost', create_dtw_image(model.output))
One just need to overwrite the _make_histogram_ops method from the TensorBoard callback class to add the custom summary. In my case, the create_dtw_image is a function that creates an image using the tf-matplotlib.
Regards,.