I am trying to design a simple Decision Tree using scikit-learn in Python (I am using Anaconda\'s Ipython Notebook with Python 2.7.3 on Windows OS) and visualize it as follo
Here is one liner for those who are using jupyter and sklearn(18.2+) You don't even need matplotlib for that. Only requirement is graphviz
pip install graphviz
than run (according to code in question X is a pandas DataFrame)
from graphviz import Source
from sklearn import tree
Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
This will display it in SVG format. Code above produces Graphviz's Source object (source_code - not scary) That would be rendered directly in jupyter.
Some things you are likely to do with it
Display it in jupter:
from IPython.display import SVG
graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
SVG(graph.pipe(format='svg'))
Save as png:
graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
graph.format = 'png'
graph.render('dtree_render',view=True)
Get the png image, save it and view it:
graph = Source( tree.export_graphviz(dtreg, out_file=None, feature_names=X.columns))
png_bytes = graph.pipe(format='png')
with open('dtree_pipe.png','wb') as f:
f.write(png_bytes)
from IPython.display import Image
Image(png_bytes)
If you are going to play with that lib here are the links to examples and userguide