I want to write a code in python to solve a sudoku puzzle. Do you guys have any idea about a good algorithm for this purpose. I read somewhere in net about a algorithm which
Here is a much faster solution based on hari's answer. The basic difference is that we keep a set of possible values for cells that don't have a value assigned. So when we try a new value, we only try valid values and we also propagate what this choice means for the rest of the sudoku. In the propagation step, we remove from the set of valid values for each cell the values that already appear in the row, column, or the same block. If only one number is left in the set, we know that the position (cell) has to have that value.
This method is known as forward checking and look ahead (http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html).
The implementation below needs one iteration (calls of solve) while hari's implementation needs 487. Of course my code is a bit longer. The propagate method is also not optimal.
import sys
from copy import deepcopy
def output(a):
sys.stdout.write(str(a))
N = 9
field = [[5,1,7,6,0,0,0,3,4],
[2,8,9,0,0,4,0,0,0],
[3,4,6,2,0,5,0,9,0],
[6,0,2,0,0,0,0,1,0],
[0,3,8,0,0,6,0,4,7],
[0,0,0,0,0,0,0,0,0],
[0,9,0,0,0,0,0,7,8],
[7,0,3,4,0,0,5,6,0],
[0,0,0,0,0,0,0,0,0]]
def print_field(field):
if not field:
output("No solution")
return
for i in range(N):
for j in range(N):
cell = field[i][j]
if cell == 0 or isinstance(cell, set):
output('.')
else:
output(cell)
if (j + 1) % 3 == 0 and j < 8:
output(' |')
if j != 8:
output(' ')
output('\n')
if (i + 1) % 3 == 0 and i < 8:
output("- - - + - - - + - - -\n")
def read(field):
""" Read field into state (replace 0 with set of possible values) """
state = deepcopy(field)
for i in range(N):
for j in range(N):
cell = state[i][j]
if cell == 0:
state[i][j] = set(range(1,10))
return state
state = read(field)
def done(state):
""" Are we done? """
for row in state:
for cell in row:
if isinstance(cell, set):
return False
return True
def propagate_step(state):
"""
Propagate one step.
@return: A two-tuple that says whether the configuration
is solvable and whether the propagation changed
the state.
"""
new_units = False
# propagate row rule
for i in range(N):
row = state[i]
values = set([x for x in row if not isinstance(x, set)])
for j in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate column rule
for j in range(N):
column = [state[x][j] for x in range(N)]
values = set([x for x in column if not isinstance(x, set)])
for i in range(N):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
# propagate cell rule
for x in range(3):
for y in range(3):
values = set()
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
cell = state[i][j]
if not isinstance(cell, set):
values.add(cell)
for i in range(3 * x, 3 * x + 3):
for j in range(3 * y, 3 * y + 3):
if isinstance(state[i][j], set):
state[i][j] -= values
if len(state[i][j]) == 1:
val = state[i][j].pop()
state[i][j] = val
values.add(val)
new_units = True
elif len(state[i][j]) == 0:
return False, None
return True, new_units
def propagate(state):
""" Propagate until we reach a fixpoint """
while True:
solvable, new_unit = propagate_step(state)
if not solvable:
return False
if not new_unit:
return True
def solve(state):
""" Solve sudoku """
solvable = propagate(state)
if not solvable:
return None
if done(state):
return state
for i in range(N):
for j in range(N):
cell = state[i][j]
if isinstance(cell, set):
for value in cell:
new_state = deepcopy(state)
new_state[i][j] = value
solved = solve(new_state)
if solved is not None:
return solved
return None
print_field(solve(state))