I\'d like to plot implicit equation F(x,y,z) = 0 in 3D. Is it possible in Matplotlib?
Update: I finally have found an easy way to render 3D implicit surface with matplotlib and scikit-image, see my other answer. I left this one for whom is interested in plotting parametric 3D surfaces.
Late answer, I just needed to do the same and I found another way to do it at some extent. So I am sharing this another perspective.
This post does not answer: (1) How to plot any implicit function F(x,y,z)=0? But does answer: (2) How to plot parametric surfaces (not all implicit functions, but some of them) using mesh with matplotlib?
@Paul's method has the advantage to be non parametric, therefore we can plot almost anything we want using contour method on each axe, it fully addresses (1). But matplotlib cannot easily build a mesh from this method, so we cannot directly get a surface from it, instead we get plane curves in all directions. This is what motivated my answer, I wanted to address (2).
If we are able to parametrize (this may be hard or impossible), with at most 2 parameters, the surface we want to plot then we can plot it with matplotlib.plot_trisurf method.
That is, from an implicit equation F(x,y,z)=0, if we are able to get a parametric system S={x=f(u,v), y=g(u,v), z=h(u,v)} then we can plot it easily with matplotlib without having to resort to contour.
Then, rendering such a 3D surface boils down to:
# Render:
ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles, cmap='jet', antialiased=True)
Where (x, y, z) are vectors (not meshgrid, see ravel) functionally computed from parameters (u, v) and triangles parameter is a Triangulation derived from (u,v) parameters to shoulder the mesh construction.
Required imports are:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from matplotlib.tri import Triangulation
Lets parametrize some surfaces...
Sphere# Parameters:
theta = np.linspace(0, 2*np.pi, 20)
phi = np.linspace(0, np.pi, 20)
theta, phi = np.meshgrid(theta, phi)
rho = 1
# Parametrization:
x = np.ravel(rho*np.cos(theta)*np.sin(phi))
y = np.ravel(rho*np.sin(theta)*np.sin(phi))
z = np.ravel(rho*np.cos(phi))
# Triangulation:
tri = Triangulation(np.ravel(theta), np.ravel(phi))
Cone
theta = np.linspace(0, 2*np.pi, 20)
rho = np.linspace(-2, 2, 20)
theta, rho = np.meshgrid(theta, rho)
x = np.ravel(rho*np.cos(theta))
y = np.ravel(rho*np.sin(theta))
z = np.ravel(rho)
tri = Triangulation(np.ravel(theta), np.ravel(rho))
Torus
a, c = 1, 4
u = np.linspace(0, 2*np.pi, 20)
v = u.copy()
u, v = np.meshgrid(u, v)
x = np.ravel((c + a*np.cos(v))*np.cos(u))
y = np.ravel((c + a*np.cos(v))*np.sin(u))
z = np.ravel(a*np.sin(v))
tri = Triangulation(np.ravel(u), np.ravel(v))
Möbius Strip
u = np.linspace(0, 2*np.pi, 20)
v = np.linspace(-1, 1, 20)
u, v = np.meshgrid(u, v)
x = np.ravel((2 + (v/2)*np.cos(u/2))*np.cos(u))
y = np.ravel((2 + (v/2)*np.cos(u/2))*np.sin(u))
z = np.ravel(v/2*np.sin(u/2))
tri = Triangulation(np.ravel(u), np.ravel(v))
Most of the time, Triangulation is required in order to coordinate mesh construction of plot_trisurf method, and this object only accepts two parameters, so we are limited to 2D parametric surfaces. It is unlikely we could represent the Goursat Tangle with this method.