How to stack multiple lstm in keras?

前端 未结 3 1694
南旧
南旧 2020-12-02 07:05

I am using deep learning library keras and trying to stack multiple LSTM with no luck. Below is my code

model = Sequential()
model.add(LSTM(100,input_shape =         


        
3条回答
  •  生来不讨喜
    2020-12-02 07:59

    You need to add return_sequences=True to the first layer so that its output tensor has ndim=3 (i.e. batch size, timesteps, hidden state).

    Please see the following example:

    # expected input data shape: (batch_size, timesteps, data_dim)
    model = Sequential()
    model.add(LSTM(32, return_sequences=True,
                   input_shape=(timesteps, data_dim)))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32, return_sequences=True))  # returns a sequence of vectors of dimension 32
    model.add(LSTM(32))  # return a single vector of dimension 32
    model.add(Dense(10, activation='softmax'))
    

    From: https://keras.io/getting-started/sequential-model-guide/ (search for "stacked lstm")

提交回复
热议问题