To test whether a number is prime or not, why do we have to test whether it is divisible only up to the square root of that number?
Given any number n, then one way to find its factors is to get its square root p:
sqrt(n) = p
Of course, if we multiply p by itself, then we get back n:
p*p = n
It can be re-written as:
a*b = n
Where p = a = b. If a increases, then b decreases to maintain a*b = n. Therefore, p is the upper limit.
Update: I am re-reading this answer again today and it became clearer to me more. The value p does not necessarily mean an integer because if it is, then n would not be a prime. So, p could be a real number (ie, with fractions). And instead of going through the whole range of n, now we only need to go through the whole range of p. The other p is a mirror copy so in effect we halve the range. And then, now I am seeing that we can actually continue re-doing the square root and doing it to p to further half the range.