My problem:
I have a dataset which is a large JSON file. I read it and store it in the trainList variable.
Next, I pre-process
Just in case some is looking for the same in MULTI-CLASS Example
def perf_measure(y_actual, y_pred):
class_id = set(y_actual).union(set(y_pred))
TP = []
FP = []
TN = []
FN = []
for index ,_id in enumerate(class_id):
TP.append(0)
FP.append(0)
TN.append(0)
FN.append(0)
for i in range(len(y_pred)):
if y_actual[i] == y_pred[i] == _id:
TP[index] += 1
if y_pred[i] == _id and y_actual[i] != y_pred[i]:
FP[index] += 1
if y_actual[i] == y_pred[i] != _id:
TN[index] += 1
if y_pred[i] != _id and y_actual[i] != y_pred[i]:
FN[index] += 1
return class_id,TP, FP, TN, FN