Supervised learning can label a new item into one of the trained labels based on learning during training. You need to provide large numbers of training data set, validation data set and test data set. If you provide say pixel image vectors of digits along with training data with labels, then it can identify the numbers.
Unsupervised learning does not require training data-sets. In unsupervised learning it can group items into different clusters based on the difference in the input vectors. If you provide pixel image vectors of digits and ask it to classify into 10 categories, it may do that. But it does know how to labels it as you have not provided training labels.