In supervised learning, the input x is provided with the expected outcome y (i.e., the output the model is supposed to produce when the input is x), which is often called the "class" (or "label") of the corresponding input x.
In unsupervised learning, the "class" of an example x is not provided. So, unsupervised learning can be thought of as finding "hidden structure" in unlabelled data set.
Approaches to supervised learning include:
Classification (1R, Naive Bayes, decision tree learning algorithm, such
as ID3 CART, and so on)
Numeric Value Prediction
Approaches to unsupervised learning include: