I want to do a linear regression in R using the lm()
function. My data is an annual time series with one field for year (22 years) and another for state (50 sta
Since 2009, dplyr
has been released which actually provides a very nice way to do this kind of grouping, closely resembling what SAS does.
library(dplyr)
d <- data.frame(state=rep(c('NY', 'CA'), c(10, 10)),
year=rep(1:10, 2),
response=c(rnorm(10), rnorm(10)))
fitted_models = d %>% group_by(state) %>% do(model = lm(response ~ year, data = .))
# Source: local data frame [2 x 2]
# Groups:
#
# state model
# (fctr) (chr)
# 1 CA
# 2 NY
fitted_models$model
# [[1]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.06354 0.02677
#
#
# [[2]]
#
# Call:
# lm(formula = response ~ year, data = .)
#
# Coefficients:
# (Intercept) year
# -0.35136 0.09385
To retrieve the coefficients and Rsquared/p.value, one can use the broom
package. This package provides:
three S3 generics: tidy, which summarizes a model's statistical findings such as coefficients of a regression; augment, which adds columns to the original data such as predictions, residuals and cluster assignments; and glance, which provides a one-row summary of model-level statistics.
library(broom)
fitted_models %>% tidy(model)
# Source: local data frame [4 x 6]
# Groups: state [2]
#
# state term estimate std.error statistic p.value
# (fctr) (chr) (dbl) (dbl) (dbl) (dbl)
# 1 CA (Intercept) -0.06354035 0.83863054 -0.0757668 0.9414651
# 2 CA year 0.02677048 0.13515755 0.1980687 0.8479318
# 3 NY (Intercept) -0.35135766 0.60100314 -0.5846187 0.5749166
# 4 NY year 0.09385309 0.09686043 0.9689519 0.3609470
fitted_models %>% glance(model)
# Source: local data frame [2 x 12]
# Groups: state [2]
#
# state r.squared adj.r.squared sigma statistic p.value df
# (fctr) (dbl) (dbl) (dbl) (dbl) (dbl) (int)
# 1 CA 0.004879969 -0.119510035 1.2276294 0.0392312 0.8479318 2
# 2 NY 0.105032068 -0.006838924 0.8797785 0.9388678 0.3609470 2
# Variables not shown: logLik (dbl), AIC (dbl), BIC (dbl), deviance (dbl),
# df.residual (int)
fitted_models %>% augment(model)
# Source: local data frame [20 x 10]
# Groups: state [2]
#
# state response year .fitted .se.fit .resid .hat
# (fctr) (dbl) (int) (dbl) (dbl) (dbl) (dbl)
# 1 CA 0.4547765 1 -0.036769875 0.7215439 0.4915464 0.3454545
# 2 CA 0.1217003 2 -0.009999399 0.6119518 0.1316997 0.2484848
# 3 CA -0.6153836 3 0.016771076 0.5146646 -0.6321546 0.1757576
# 4 CA -0.9978060 4 0.043541551 0.4379605 -1.0413476 0.1272727
# 5 CA 2.1385614 5 0.070312027 0.3940486 2.0682494 0.1030303
# 6 CA -0.3924598 6 0.097082502 0.3940486 -0.4895423 0.1030303
# 7 CA -0.5918738 7 0.123852977 0.4379605 -0.7157268 0.1272727
# 8 CA 0.4671346 8 0.150623453 0.5146646 0.3165112 0.1757576
# 9 CA -1.4958726 9 0.177393928 0.6119518 -1.6732666 0.2484848
# 10 CA 1.7481956 10 0.204164404 0.7215439 1.5440312 0.3454545
# 11 NY -0.6285230 1 -0.257504572 0.5170932 -0.3710185 0.3454545
# 12 NY 1.0566099 2 -0.163651479 0.4385542 1.2202614 0.2484848
# 13 NY -0.5274693 3 -0.069798386 0.3688335 -0.4576709 0.1757576
# 14 NY 0.6097983 4 0.024054706 0.3138637 0.5857436 0.1272727
# 15 NY -1.5511940 5 0.117907799 0.2823942 -1.6691018 0.1030303
# 16 NY 0.7440243 6 0.211760892 0.2823942 0.5322634 0.1030303
# 17 NY 0.1054719 7 0.305613984 0.3138637 -0.2001421 0.1272727
# 18 NY 0.7513057 8 0.399467077 0.3688335 0.3518387 0.1757576
# 19 NY -0.1271655 9 0.493320170 0.4385542 -0.6204857 0.2484848
# 20 NY 1.2154852 10 0.587173262 0.5170932 0.6283119 0.3454545
# Variables not shown: .sigma (dbl), .cooksd (dbl), .std.resid (dbl)