I have an array X:
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
And
Here is a pretty fast solution that scales up well using numpy and hashlib. It can handle large dimensional matrices or images in seconds. I used it on 520000 X (28 X 28) array and 20000 X (28 X 28) in 2 seconds on my CPU
Code:
import numpy as np
import hashlib
X = np.array([[4, 2],
[9, 3],
[8, 5],
[3, 3],
[5, 6]])
searched_values = np.array([[4, 2],
[3, 3],
[5, 6]])
#hash using sha1 appears to be efficient
xhash=[hashlib.sha1(row).digest() for row in X]
yhash=[hashlib.sha1(row).digest() for row in searched_values]
z=np.in1d(xhash,yhash)
##Use unique to get unique indices to ind1 results
_,unique=np.unique(np.array(xhash)[z],return_index=True)
##Compute unique indices by indexing an array of indices
idx=np.array(range(len(xhash)))
unique_idx=idx[z][unique]
print('unique_idx=',unique_idx)
print('X[unique_idx]=',X[unique_idx])
Output:
unique_idx= [4 3 0]
X[unique_idx]= [[5 6]
[3 3]
[4 2]]