I have a data frame with 3 columns: custId, saleDate, DelivDateTime.
> head(events22)
custId saleDate DelivDate
1 280356593 2012-11-1
I, too, would recommend data.table here, but since you asked for an aggregate solution, here is one which combines aggregate and merge to get all the columns:
merge(events22, aggregate(saleDate ~ custId, events22, max))
Or just aggregate if you only want the "custId" and "DelivDate" columns:
aggregate(list(DelivDate = events22$saleDate),
list(custId = events22$custId),
function(x) events22[["DelivDate"]][which.max(x)])
Finally, here's an option using sqldf:
library(sqldf)
sqldf("select custId, DelivDate, max(saleDate) `saleDate`
from events22 group by custId")
I'm not a benchmarking or data.table expert, but it surprised me that data.table is not faster here. My suspicion is that the results would be quite different on a larger dataset, say for instance, your 400k lines one. Anyway, here's some benchmarking code modeled after @mnel's answer here so you can do some tests on your actual dataset for future reference.
library(rbenchmark)
First, set up your functions for what you want to benchmark.
DDPLY <- function() {
x <- ddply(events22, .(custId), .inform = T,
function(x) {
x[x$saleDate == max(x$saleDate),"DelivDate"]})
}
DATATABLE <- function() { x <- dt[, .SD[which.max(saleDate), ], by = custId] }
AGG1 <- function() {
x <- merge(events22, aggregate(saleDate ~ custId, events22, max)) }
AGG2 <- function() {
x <- aggregate(list(DelivDate = events22$saleDate),
list(custId = events22$custId),
function(x) events22[["DelivDate"]][which.max(x)]) }
SQLDF <- function() {
x <- sqldf("select custId, DelivDate, max(saleDate) `saleDate`
from events22 group by custId") }
DOCALL <- function() {
do.call(rbind,
lapply(split(events22, events22$custId), function(x){
x[which.max(x$saleDate), ]
})
)
}
Second, do the benchmarking.
benchmark(DDPLY(), DATATABLE(), AGG1(), AGG2(), SQLDF(), DOCALL(),
order = "elapsed")[1:5]
# test replications elapsed relative user.self
# 4 AGG2() 100 0.285 1.000 0.284
# 3 AGG1() 100 0.891 3.126 0.896
# 6 DOCALL() 100 1.202 4.218 1.204
# 2 DATATABLE() 100 1.251 4.389 1.248
# 1 DDPLY() 100 1.254 4.400 1.252
# 5 SQLDF() 100 2.109 7.400 2.108