I am writing a thin wrapper around ArUco augmented reality library (which is based on OpenCV). An interface I am trying to build is very simple:
Optionally, if you don't like to use wrappers, and want to use native python extension module, you can do it like this.
python3:
my_image = cv.imread("my_image.jpg", 1) # reads colorfull image in python
dims = my_image.shape # get image shape (h, w, c)
my_image = my_image.ravel() # flattens 3d array into 1d
cppextenionmodule.np_to_mat(dims, my_image)
c++:
static PyObject *np_to_mat(PyObject *self, PyObject *args){
PyObject *size;
PyArrayObject *image;
if (!PyArg_ParseTuple(args, "O!O!", &PyTuple_Type, &size, &PyArray_Type, &image)) {
return NULL;
}
int rows = PyLong_AsLong(PyTuple_GetItem(size ,0));
int cols = PyLong_AsLong(PyTuple_GetItem(size ,1));
int nchannels = PyLong_AsLong(PyTuple_GetItem(size ,2));
char my_arr[rows * nchannels * cols];
for(size_t length = 0; length<(rows * nchannels * cols); length++){
my_arr[length] = (*(char *)PyArray_GETPTR1(image, length));
}
cv::Mat my_img = cv::Mat(cv::Size(cols, rows), CV_8UC3, &my_arr);
... whatever with the image
}