In terms of performance in Python, is a list-comprehension, or functions like map(), filter() and reduce() faster than a for loop? Why
I modified @Alisa's code and used cProfile to show why list comprehension is faster:
from functools import reduce
import datetime
def reduce_(numbers):
return reduce(lambda sum, next: sum + next * next, numbers, 0)
def for_loop(numbers):
a = []
for i in numbers:
a.append(i*2)
a = sum(a)
return a
def map_(numbers):
sqrt = lambda x: x*x
return sum(map(sqrt, numbers))
def list_comp(numbers):
return(sum([i*i for i in numbers]))
funcs = [
reduce_,
for_loop,
map_,
list_comp
]
if __name__ == "__main__":
# [1, 2, 5, 3, 1, 2, 5, 3]
import cProfile
for f in funcs:
print('=' * 25)
print("Profiling:", f.__name__)
print('=' * 25)
pr = cProfile.Profile()
for i in range(10**6):
pr.runcall(f, [1, 2, 5, 3, 1, 2, 5, 3])
pr.create_stats()
pr.print_stats()
Here's the results:
=========================
Profiling: reduce_
=========================
11000000 function calls in 1.501 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.162 0.000 1.473 0.000 profiling.py:4(reduce_)
8000000 0.461 0.000 0.461 0.000 profiling.py:5()
1000000 0.850 0.000 1.311 0.000 {built-in method _functools.reduce}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: for_loop
=========================
11000000 function calls in 1.372 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.879 0.000 1.344 0.000 profiling.py:7(for_loop)
1000000 0.145 0.000 0.145 0.000 {built-in method builtins.sum}
8000000 0.320 0.000 0.320 0.000 {method 'append' of 'list' objects}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: map_
=========================
11000000 function calls in 1.470 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.264 0.000 1.442 0.000 profiling.py:14(map_)
8000000 0.387 0.000 0.387 0.000 profiling.py:15()
1000000 0.791 0.000 1.178 0.000 {built-in method builtins.sum}
1000000 0.028 0.000 0.028 0.000 {method 'disable' of '_lsprof.Profiler' objects}
=========================
Profiling: list_comp
=========================
4000000 function calls in 0.737 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1000000 0.318 0.000 0.709 0.000 profiling.py:18(list_comp)
1000000 0.261 0.000 0.261 0.000 profiling.py:19()
1000000 0.131 0.000 0.131 0.000 {built-in method builtins.sum}
1000000 0.027 0.000 0.027 0.000 {method 'disable' of '_lsprof.Profiler' objects}
IMHO:
reduce and map are in general pretty slow. Not only that, using sum on the iterators that map returned is slow, compared to suming a listfor_loop uses append, which is of course slow to some extentsum much quicker, in contrast to map