How can matplotlib 2D patches be transformed to 3D with arbitrary normals?
I would like to plot Patches in axes with
Here's a more generalmethod that allows embedding in more complex ways than along a normal:
class EmbeddedPatch2D(art3d.PathPatch3D):
def __init__(self, patch, transform):
assert transform.shape == (4, 3)
self._patch2d = patch
self.transform = transform
self._path2d = patch.get_path()
self._facecolor2d = patch.get_facecolor()
self.set_3d_properties()
def set_3d_properties(self, *args, **kwargs):
# get the fully-transformed path
path = self._patch2d.get_path()
trans = self._patch2d.get_patch_transform()
path = trans.transform_path(path)
# copy across the relevant properties
self._code3d = path.codes
self._facecolor3d = self._patch2d.get_facecolor()
# calculate the transformed vertices
verts = np.empty(path.vertices.shape + np.array([0, 1]))
verts[:,:-1] = path.vertices
verts[:,-1] = 1
self._segment3d = verts.dot(self.transform.T)[:,:-1]
def __getattr__(self, key):
return getattr(self._patch2d, key)
To use this as desired in the question, we need a helper function
def matrix_from_normal(normal):
"""
given a normal vector, builds a homogeneous rotation matrix such that M.dot([1, 0, 0]) == normal
"""
normal = normal / np.linalg.norm(normal)
res = np.eye(normal.ndim+1)
res[:-1,0] = normal
if normal [0] == 0:
perp = [0, -normal[2], normal[1]]
else:
perp = np.cross(normal, [1, 0, 0])
perp /= np.linalg.norm(perp)
res[:-1,1] = perp
res[:-1,2] = np.cross(self.dir, perp)
return res
All together:
circ = Circle((0,0), .2, facecolor = 'y', alpha = .2)
# the matrix here turns (x, y, 1) into (0, x, y, 1)
mat = matrix_from_normal([1, 1, 0]).dot([
[0, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
])
circ3d = EmbeddedPatch2D(circ, mat)