I have a dataframe that has two rows:
| code | name | v1 | v2 | v3 | v4 |
|------|-------|----|----|----|----|
| 345 | Yemen | NA | 2 | 3 | NA |
| 346 |
Adding dplyr & data.table solutions for completeness
Using dplyr::coalesce()
library(dplyr)
sum_NA <- function(x) {if (all(is.na(x))) x[NA_integer_] else sum(x, na.rm = TRUE)}
df %>%
group_by(name) %>%
summarise_all(sum_NA)
#> # A tibble: 1 x 6
#> name code v1 v2 v3 v4
#>
#> 1 Yemen 691 4 2 3 5
# Ref: https://stackoverflow.com/a/45515491
# Supply lists by splicing them into dots:
coalesce_by_column <- function(df) {
return(dplyr::coalesce(!!! as.list(df)))
}
df %>%
group_by(name) %>%
summarise_all(coalesce_by_column)
#> # A tibble: 1 x 6
#> name code v1 v2 v3 v4
#>
#> 1 Yemen 345 4 2 3 5
Using data.table
# Ref: https://stackoverflow.com/q/28036294/
library(data.table)
setDT(df)[, lapply(.SD, na.omit), by = name]
#> name code v1 v2 v3 v4
#> 1: Yemen 345 4 2 3 5
#> 2: Yemen 346 4 2 3 5
setDT(df)[, code := NULL][, lapply(.SD, na.omit), by = name]
#> name v1 v2 v3 v4
#> 1: Yemen 4 2 3 5
setDT(df)[, code := NULL][, lapply(.SD, sum_NA), by = name]
#> name v1 v2 v3 v4
#> 1: Yemen 4 2 3 5