I just started moving from Matlab to Python 2.7 and I have some trouble reading my .mat-files. Time information is stored in Matlab\'s datenum format. For those who are not
Just building on and adding to previous comments. The key is in the day counting as carried out by the method toordinal and constructor fromordinal in the class datetime and related subclasses. For example, from the Python Library Reference for 2.7, one reads that fromordinal
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1. ValueError is raised unless 1 <= ordinal <= date.max.toordinal().
However, year 0 AD is still one (leap) year to count in, so there are still 366 days that need to be taken into account. (Leap year it was, like 2016 that is exactly 504 four-year cycles ago.)
These are two functions that I have been using for similar purposes:
import datetime
def datetime_pytom(d,t):
'''
Input
d Date as an instance of type datetime.date
t Time as an instance of type datetime.time
Output
The fractional day count since 0-Jan-0000 (proleptic ISO calendar)
This is the 'datenum' datatype in matlab
Notes on day counting
matlab: day one is 1 Jan 0000
python: day one is 1 Jan 0001
hence an increase of 366 days, for year 0 AD was a leap year
'''
dd = d.toordinal() + 366
tt = datetime.timedelta(hours=t.hour,minutes=t.minute,
seconds=t.second)
tt = datetime.timedelta.total_seconds(tt) / 86400
return dd + tt
def datetime_mtopy(datenum):
'''
Input
The fractional day count according to datenum datatype in matlab
Output
The date and time as a instance of type datetime in python
Notes on day counting
matlab: day one is 1 Jan 0000
python: day one is 1 Jan 0001
hence a reduction of 366 days, for year 0 AD was a leap year
'''
ii = datetime.datetime.fromordinal(int(datenum) - 366)
ff = datetime.timedelta(days=datenum%1)
return ii + ff
Hope this helps and happy to be corrected.