So I\'ve been working recently on an implementation of the Miller-Rabin primality test. I am limiting it to a scope of all 32-bit numbers, because this is a just-for-fun pr
Two things:
No, it does not, since at one point you have Your code does not work because at one point you have num = 2^16 and the num = ... causes overflow. Use a bigger data type to hold this intermediate value.
How about taking modulo at every possible overflow oppertunity such as:
test = ((test % mod) * (num % mod)) % mod;
Edit:
unsigned mod_pow(unsigned num, unsigned pow, unsigned mod)
{
unsigned long long test;
unsigned long long n = num;
for(test = 1; pow; pow >>= 1)
{
if (pow & 1)
test = ((test % mod) * (n % mod)) % mod;
n = ((n % mod) * (n % mod)) % mod;
}
return test; /* note this is potentially lossy */
}
int main(int argc, char* argv[])
{
/* (2 ^ 168277) % 673109 */
printf("%u\n", mod_pow(2, 168277, 673109));
return 0;
}