I have the following dataframe:
obj_id data_date value
0 4 2011-11-01 59500
1 2 2011-10-01 35200
2 4 2010-07-31 24860
I believe to have found a more appropriate solution based off the ones in this thread. However mine uses the apply function of a dataframe instead of the aggregate. It also returns a new dataframe with the same columns as the original.
df = pd.DataFrame({
'CARD_NO': ['000', '001', '002', '002', '001', '111'],
'DATE': ['2006-12-31 20:11:39','2006-12-27 20:11:53','2006-12-28 20:12:11','2006-12-28 20:12:13','2008-12-27 20:11:53','2006-12-30 20:11:39']})
print df
df.groupby('CARD_NO').apply(lambda df:df['DATE'].values[df['DATE'].values.argmax()])
Original
CARD_NO DATE
0 000 2006-12-31 20:11:39
1 001 2006-12-27 20:11:53
2 002 2006-12-28 20:12:11
3 002 2006-12-28 20:12:13
4 001 2008-12-27 20:11:53
5 111 2006-12-30 20:11:39
Returned dataframe:
CARD_NO
000 2006-12-31 20:11:39
001 2008-12-27 20:11:53
002 2006-12-28 20:12:13
111 2006-12-30 20:11:39