I\'m trying to run over the parameters space of a 6 parameter function to study it\'s numerical behavior before trying to do anything complex with it so I\'m searching for a
Here's yet another way, using pure NumPy, no recursion, no list comprehension, and no explicit for loops. It's about 20% slower than the original answer, and it's based on np.meshgrid.
def cartesian(*arrays):
mesh = np.meshgrid(*arrays) # standard numpy meshgrid
dim = len(mesh) # number of dimensions
elements = mesh[0].size # number of elements, any index will do
flat = np.concatenate(mesh).ravel() # flatten the whole meshgrid
reshape = np.reshape(flat, (dim, elements)).T # reshape and transpose
return reshape
For example,
x = np.arange(3)
a = cartesian(x, x, x, x, x)
print(a)
gives
[[0 0 0 0 0]
[0 0 0 0 1]
[0 0 0 0 2]
...,
[2 2 2 2 0]
[2 2 2 2 1]
[2 2 2 2 2]]