What platforms have something other than 8-bit char?

前端 未结 12 1442
再見小時候
再見小時候 2020-11-22 00:31

Every now and then, someone on SO points out that char (aka \'byte\') isn\'t necessarily 8 bits.

It seems that 8-bit char is almost universal. I would h

12条回答
  •  暗喜
    暗喜 (楼主)
    2020-11-22 01:30

    There is no such thing as a completely portable code. :-)

    Yes, there may be various byte/char sizes. Yes, there may be C/C++ implementations for platforms with highly unusual values of CHAR_BIT and UCHAR_MAX. Yes, sometimes it is possible to write code that does not depend on char size.

    However, almost any real code is not standalone. E.g. you may be writing a code that sends binary messages to network (protocol is not important). You may define structures that contain necessary fields. Than you have to serialize it. Just binary copying a structure into an output buffer is not portable: generally you don't know neither the byte order for the platform, nor structure members alignment, so the structure just holds the data, but not describes the way the data should be serialized.

    Ok. You may perform byte order transformations and move the structure members (e.g. uint32_t or similar) using memcpy into the buffer. Why memcpy? Because there is a lot of platforms where it is not possible to write 32-bit (16-bit, 64-bit -- no difference) when the target address is not aligned properly.

    So, you have already done a lot to achieve portability.

    And now the final question. We have a buffer. The data from it is sent to TCP/IP network. Such network assumes 8-bit bytes. The question is: of what type the buffer should be? If your chars are 9-bit? If they are 16-bit? 24? Maybe each char corresponds to one 8-bit byte sent to network, and only 8 bits are used? Or maybe multiple network bytes are packed into 24/16/9-bit chars? That's a question, and it is hard to believe there is a single answer that fits all cases. A lot of things depend on socket implementation for the target platform.

    So, what I am speaking about. Usually code may be relatively easily made portable to certain extent. It's very important to do so if you expect using the code on different platforms. However, improving portability beyond that measure is a thing that requires a lot of effort and often gives little, as the real code almost always depends on other code (socket implementation in the example above). I am sure that for about 90% of code ability to work on platforms with bytes other than 8-bit is almost useless, for it uses environment that is bound to 8-bit. Just check the byte size and perform compilation time assertion. You almost surely will have to rewrite a lot for a highly unusual platform.

    But if your code is highly "standalone" -- why not? You may write it in a way that allows different byte sizes.

提交回复
热议问题