My question is fairly simple and I am quite surprised I can\'t find anything related. Probably it is easy or totally stupid (or I can\'t search).
As the title says,
Like this.. Containers in the standard usually take an allocator. Using c++11's allocator traits, it is very easy to create an allocator as you don't have to have all the members in the allocator. However if using an older version of C++, you will need to implement each member and do the rebinding as well!
For Pre-C++11, you can use the following:
#include
#include
#include
template
class PreAllocator
{
private:
T* memory_ptr;
std::size_t memory_size;
public:
typedef std::size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
PreAllocator(T* memory_ptr, std::size_t memory_size) throw() : memory_ptr(memory_ptr), memory_size(memory_size) {};
PreAllocator (const PreAllocator& other) throw() : memory_ptr(other.memory_ptr), memory_size(other.memory_size) {};
template
PreAllocator (const PreAllocator& other) throw() : memory_ptr(other.memory_ptr), memory_size(other.memory_size) {};
template
PreAllocator& operator = (const PreAllocator& other) {return *this;}
PreAllocator& operator = (const PreAllocator& other) {return *this;}
~PreAllocator() {}
pointer address (reference value) const {return &value;}
const_pointer address (const_reference value) const {return &value;}
pointer allocate (size_type n, const void* hint = 0) {return memory_ptr;}
void deallocate (T* ptr, size_type n) {}
void construct (pointer ptr, const T& val) {new (ptr) T (val);}
template
void destroy (U* ptr) {ptr->~U();}
void destroy (pointer ptr) {ptr->~T();}
size_type max_size() const {return memory_size;}
template
struct rebind
{
typedef PreAllocator other;
};
};
int main()
{
int my_arr[100] = {0};
std::vector > my_vec(PreAllocator(&my_arr[0], 100));
my_vec.push_back(1024);
std::cout<<"My_Vec[0]: "< > my_heap_vec(PreAllocator(&my_heap_ptr[0], 100));
my_heap_vec.push_back(1024);
std::cout<<"My_Heap_Vec[0]: "<
For C++11, you can use the following:
#include
#include
#include
#include
template
class PreAllocator
{
private:
T* memory_ptr;
std::size_t memory_size;
public:
typedef std::size_t size_type;
typedef T* pointer;
typedef T value_type;
PreAllocator(T* memory_ptr, std::size_t memory_size) : memory_ptr(memory_ptr), memory_size(memory_size) {}
PreAllocator(const PreAllocator& other) throw() : memory_ptr(other.memory_ptr), memory_size(other.memory_size) {};
template
PreAllocator(const PreAllocator& other) throw() : memory_ptr(other.memory_ptr), memory_size(other.memory_size) {};
template
PreAllocator& operator = (const PreAllocator& other) { return *this; }
PreAllocator& operator = (const PreAllocator& other) { return *this; }
~PreAllocator() {}
pointer allocate(size_type n, const void* hint = 0) {return memory_ptr;}
void deallocate(T* ptr, size_type n) {}
size_type max_size() const {return memory_size;}
};
int main()
{
int my_arr[100] = {0};
std::vector> my_vec(0, PreAllocator(&my_arr[0], 100));
my_vec.push_back(1024);
std::cout<<"My_Vec[0]: "<> my_heap_vec(0, PreAllocator(&my_heap_ptr[0], 100));
my_heap_vec.push_back(1024);
std::cout<<"My_Heap_Vec[0]: "<
Notice the difference between the two allocators! This will work with both heap buffers/arrays and stack buffer/arrays. It will also work with most containers. It is safer to use the Pre-C++11 version because it will be backwards compatible and work with more containers (ie: std::List).
You can just place the allocator in a header and use it as much as you want in any projects. It is good if you want to use SharedMemory or any buffer that is already allocated.
WARNING: DO NOT use the same buffer for multiple containers at the same time! A buffer can be reused but just make sure no two containers use it at the same time.
Example:
int my_arr[100] = {0};
std::vector > my_vec(PreAllocator(&my_arr[0], 100));
std::vector > my_vec2(PreAllocator(&my_arr[0], 100));
my_vec.push_back(1024);
my_vec2.push_back(2048);
std::cout<<"My_Vec[0]: "<
The output of the above is 2048! Why? Because the last vector overwrote the values of the first vector since they share the same buffer.