How can I find the duplicates in a Python list and create another list of the duplicates? The list only contains integers.
I came across this question whilst looking in to something related - and wonder why no-one offered a generator based solution? Solving this problem would be:
>>> print list(getDupes_9([1,2,3,2,1,5,6,5,5,5]))
[1, 2, 5]
I was concerned with scalability, so tested several approaches, including naive items that work well on small lists, but scale horribly as lists get larger (note- would have been better to use timeit, but this is illustrative).
I included @moooeeeep for comparison (it is impressively fast: fastest if the input list is completely random) and an itertools approach that is even faster again for mostly sorted lists... Now includes pandas approach from @firelynx -- slow, but not horribly so, and simple. Note - sort/tee/zip approach is consistently fastest on my machine for large mostly ordered lists, moooeeeep is fastest for shuffled lists, but your mileage may vary.
Advantages
Assumptions
Fastest solution, 1m entries:
def getDupes(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
Approaches tested
import itertools
import time
import random
def getDupes_1(c):
'''naive'''
for i in xrange(0, len(c)):
if c[i] in c[:i]:
yield c[i]
def getDupes_2(c):
'''set len change'''
s = set()
for i in c:
l = len(s)
s.add(i)
if len(s) == l:
yield i
def getDupes_3(c):
'''in dict'''
d = {}
for i in c:
if i in d:
if d[i]:
yield i
d[i] = False
else:
d[i] = True
def getDupes_4(c):
'''in set'''
s,r = set(),set()
for i in c:
if i not in s:
s.add(i)
elif i not in r:
r.add(i)
yield i
def getDupes_5(c):
'''sort/adjacent'''
c = sorted(c)
r = None
for i in xrange(1, len(c)):
if c[i] == c[i - 1]:
if c[i] != r:
yield c[i]
r = c[i]
def getDupes_6(c):
'''sort/groupby'''
def multiple(x):
try:
x.next()
x.next()
return True
except:
return False
for k, g in itertools.ifilter(lambda x: multiple(x[1]), itertools.groupby(sorted(c))):
yield k
def getDupes_7(c):
'''sort/zip'''
c = sorted(c)
r = None
for k, g in zip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_8(c):
'''sort/izip'''
c = sorted(c)
r = None
for k, g in itertools.izip(c[:-1],c[1:]):
if k == g:
if k != r:
yield k
r = k
def getDupes_9(c):
'''sort/tee/izip'''
a, b = itertools.tee(sorted(c))
next(b, None)
r = None
for k, g in itertools.izip(a, b):
if k != g: continue
if k != r:
yield k
r = k
def getDupes_a(l):
'''moooeeeep'''
seen = set()
seen_add = seen.add
# adds all elements it doesn't know yet to seen and all other to seen_twice
for x in l:
if x in seen or seen_add(x):
yield x
def getDupes_b(x):
'''iter*/sorted'''
x = sorted(x)
def _matches():
for k,g in itertools.izip(x[:-1],x[1:]):
if k == g:
yield k
for k, n in itertools.groupby(_matches()):
yield k
def getDupes_c(a):
'''pandas'''
import pandas as pd
vc = pd.Series(a).value_counts()
i = vc[vc > 1].index
for _ in i:
yield _
def hasDupes(fn,c):
try:
if fn(c).next(): return True # Found a dupe
except StopIteration:
pass
return False
def getDupes(fn,c):
return list(fn(c))
STABLE = True
if STABLE:
print 'Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array'
else:
print 'Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array'
for location in (50,250000,500000,750000,999999):
for test in (getDupes_2, getDupes_3, getDupes_4, getDupes_5, getDupes_6,
getDupes_8, getDupes_9, getDupes_a, getDupes_b, getDupes_c):
print 'Test %-15s:%10d - '%(test.__doc__ or test.__name__,location),
deltas = []
for FIRST in (True,False):
for i in xrange(0, 5):
c = range(0,1000000)
if STABLE:
c[0] = location
else:
c.append(location)
random.shuffle(c)
start = time.time()
if FIRST:
print '.' if location == test(c).next() else '!',
else:
print '.' if [location] == list(test(c)) else '!',
deltas.append(time.time()-start)
print ' -- %0.3f '%(sum(deltas)/len(deltas)),
print
print
The results for the 'all dupes' test were consistent, finding "first" duplicate then "all" duplicates in this array:
Finding FIRST then ALL duplicates, single dupe of "nth" placed element in 1m element array
Test set len change : 500000 - . . . . . -- 0.264 . . . . . -- 0.402
Test in dict : 500000 - . . . . . -- 0.163 . . . . . -- 0.250
Test in set : 500000 - . . . . . -- 0.163 . . . . . -- 0.249
Test sort/adjacent : 500000 - . . . . . -- 0.159 . . . . . -- 0.229
Test sort/groupby : 500000 - . . . . . -- 0.860 . . . . . -- 1.286
Test sort/izip : 500000 - . . . . . -- 0.165 . . . . . -- 0.229
Test sort/tee/izip : 500000 - . . . . . -- 0.145 . . . . . -- 0.206 *
Test moooeeeep : 500000 - . . . . . -- 0.149 . . . . . -- 0.232
Test iter*/sorted : 500000 - . . . . . -- 0.160 . . . . . -- 0.221
Test pandas : 500000 - . . . . . -- 0.493 . . . . . -- 0.499
When the lists are shuffled first, the price of the sort becomes apparent - the efficiency drops noticeably and the @moooeeeep approach dominates, with set & dict approaches being similar but lessor performers:
Finding FIRST then ALL duplicates, single dupe of "n" included in randomised 1m element array
Test set len change : 500000 - . . . . . -- 0.321 . . . . . -- 0.473
Test in dict : 500000 - . . . . . -- 0.285 . . . . . -- 0.360
Test in set : 500000 - . . . . . -- 0.309 . . . . . -- 0.365
Test sort/adjacent : 500000 - . . . . . -- 0.756 . . . . . -- 0.823
Test sort/groupby : 500000 - . . . . . -- 1.459 . . . . . -- 1.896
Test sort/izip : 500000 - . . . . . -- 0.786 . . . . . -- 0.845
Test sort/tee/izip : 500000 - . . . . . -- 0.743 . . . . . -- 0.804
Test moooeeeep : 500000 - . . . . . -- 0.234 . . . . . -- 0.311 *
Test iter*/sorted : 500000 - . . . . . -- 0.776 . . . . . -- 0.840
Test pandas : 500000 - . . . . . -- 0.539 . . . . . -- 0.540