I need a way to compute the nth root of a long integer in Python.
I tried pow(m, 1.0/n), but it doesn\'t work:
OverflowError: lo
You can make it run slightly faster by avoiding the while loops in favor of setting low to 10 ** (len(str(x)) / n) and high to low * 10. Probably better is to replace the len(str(x)) with the bitwise length and using a bit shift. Based on my tests, I estimate a 5% speedup from the first and a 25% speedup from the second. If the ints are big enough, this might matter (and the speedups may vary). Don't trust my code without testing it carefully. I did some basic testing but may have missed an edge case. Also, these speedups vary with the number chosen.
If the actual data you're using is much bigger than what you posted here, this change may be worthwhile.
from timeit import Timer
def find_invpow(x,n):
"""Finds the integer component of the n'th root of x,
an integer such that y ** n <= x < (y + 1) ** n.
"""
high = 1
while high ** n < x:
high *= 2
low = high/2
while low < high:
mid = (low + high) // 2
if low < mid and mid**n < x:
low = mid
elif high > mid and mid**n > x:
high = mid
else:
return mid
return mid + 1
def find_invpowAlt(x,n):
"""Finds the integer component of the n'th root of x,
an integer such that y ** n <= x < (y + 1) ** n.
"""
low = 10 ** (len(str(x)) / n)
high = low * 10
while low < high:
mid = (low + high) // 2
if low < mid and mid**n < x:
low = mid
elif high > mid and mid**n > x:
high = mid
else:
return mid
return mid + 1
x = 237734537465873465
n = 5
tests = 10000
print "Norm", Timer('find_invpow(x,n)', 'from __main__ import find_invpow, x,n').timeit(number=tests)
print "Alt", Timer('find_invpowAlt(x,n)', 'from __main__ import find_invpowAlt, x,n').timeit(number=tests)
Norm 0.626754999161
Alt 0.566340923309