In the help files for dcast.data.table, there is a note stating that a new feature has been implemented: \"dcast.data.table allows value.var column to be of typ
Apparently, the fix was much easier...
Technically, your statement that "apparently there is no such feature" isn't quite correct. There is such a feature in the recast function (which sort of hides the melting and casting process), but it seems like Hadley forgot to finish the function or something: the function returns a list of the relevant parts of your operation.
Here's a minimal example...
Some sample data:
set.seed(1)
mydf <- data.frame(x1 = rep(1:3, each = 3),
x2 = rep(1:3, 3),
salt = sample(10, 9, TRUE),
sugar = sample(7, 9, TRUE))
mydf
# x1 x2 salt sugar
# 1 1 1 3 1
# 2 1 2 4 2
# 3 1 3 6 2
# 4 2 1 10 5
# 5 2 2 3 3
# 6 2 3 9 6
# 7 3 1 10 4
# 8 3 2 7 6
# 9 3 3 7 7
The effect you seem to be trying to achieve:
reshape(mydf, idvar='x1', timevar='x2', direction='wide')
# x1 salt.1 sugar.1 salt.2 sugar.2 salt.3 sugar.3
# 1 1 3 1 4 2 6 2
# 4 2 10 5 3 3 9 6
# 7 3 10 4 7 6 7 7
recast in action. (Note that the values are all what we would expect in the dimensions we would expect it.)
library(reshape2)
out <- recast(mydf, x1 ~ x2 + variable, measure.var = c("salt", "sugar"))
### recast(mydf, x1 ~ x2 + variable, id.var = c("x1", "x2"))
out
# $data
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 3 1 4 2 6 2
# [2,] 10 5 3 3 9 6
# [3,] 10 4 7 6 7 7
#
# $labels
# $labels[[1]]
# x1
# 1 1
# 2 2
# 3 3
#
# $labels[[2]]
# x2 variable
# 1 1 salt
# 2 1 sugar
# 3 2 salt
# 4 2 sugar
# 5 3 salt
# 6 3 sugar
I'm honestly not sure if this was an incomplete function, or if it is a helper function to another function.
All of the information is there to be able to put the data back together again, making it easy to write a function like this:
recast2 <- function(...) {
inList <- recast(...)
setNames(cbind(inList[[2]][[1]], inList[[1]]),
c(names(inList[[2]][[1]]),
do.call(paste, c(rev(inList[[2]][[2]]), sep = "_"))))
}
recast2(mydf, x1 ~ x2 + variable, measure.var = c("salt", "sugar"))
# x1 salt_1 sugar_1 salt_2 sugar_2 salt_3 sugar_3
# 1 1 3 1 4 2 6 2
# 2 2 10 5 3 3 9 6
# 3 3 10 4 7 6 7 7
Again, a possible advantage with the recast2 approach is the ability to aggregate as well as reshape in the same step.