With Swift 4\'s Codable protocol there\'s a great level of under the hood date and data conversion strategies.
Given the JSON:
{
\"name\": \"Bob\
Unfortunately, I don't believe such an option exists in the current JSONDecoder API. There only exists an option in order to convert exceptional floating-point values to and from a string representation.
Another possible solution to decoding manually is to define a Codable wrapper type for any LosslessStringConvertible that can encode to and decode from its String representation:
struct StringCodableMap : Codable {
var decoded: Decoded
init(_ decoded: Decoded) {
self.decoded = decoded
}
init(from decoder: Decoder) throws {
let container = try decoder.singleValueContainer()
let decodedString = try container.decode(String.self)
guard let decoded = Decoded(decodedString) else {
throw DecodingError.dataCorruptedError(
in: container, debugDescription: """
The string \(decodedString) is not representable as a \(Decoded.self)
"""
)
}
self.decoded = decoded
}
func encode(to encoder: Encoder) throws {
var container = encoder.singleValueContainer()
try container.encode(decoded.description)
}
}
Then you can just have a property of this type and use the auto-generated Codable conformance:
struct Example : Codable {
var name: String
var age: Int
var taxRate: StringCodableMap
private enum CodingKeys: String, CodingKey {
case name, age
case taxRate = "tax_rate"
}
}
Although unfortunately, now you have to talk in terms of taxRate.decoded in order to interact with the Float value.
However you could always define a simple forwarding computed property in order to alleviate this:
struct Example : Codable {
var name: String
var age: Int
private var _taxRate: StringCodableMap
var taxRate: Float {
get { return _taxRate.decoded }
set { _taxRate.decoded = newValue }
}
private enum CodingKeys: String, CodingKey {
case name, age
case _taxRate = "tax_rate"
}
}
Although this still isn't as a slick as it really should be – hopefully a later version of the JSONDecoder API will include more custom decoding options, or else have the ability to express type conversions within the Codable API itself.
However one advantage of creating the wrapper type is that it can also be used in order to make manual decoding and encoding simpler. For example, with manual decoding:
struct Example : Decodable {
var name: String
var age: Int
var taxRate: Float
private enum CodingKeys: String, CodingKey {
case name, age
case taxRate = "tax_rate"
}
init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
self.name = try container.decode(String.self, forKey: .name)
self.age = try container.decode(Int.self, forKey: .age)
self.taxRate = try container.decode(StringCodableMap.self,
forKey: .taxRate).decoded
}
}