Suppose we have two items missing in a sequence of consecutive integers and the missing elements lie between the first and last elements. I did write a code that does accomp
Assuming that L is a list of integers with no duplicates, you can infer that the part of the list between start and index is completely consecutive if and only if L[index] == L[start] + (index - start) and similarly with index and end is completely consecutive if and only if L[index] == L[end] - (end - index). This combined with splitting the list into two recursively gives a sublinear solution.
# python 3.3 and up, in older versions, replace "yield from" with yield loop
def missing_elements(L, start, end):
if end - start <= 1:
if L[end] - L[start] > 1:
yield from range(L[start] + 1, L[end])
return
index = start + (end - start) // 2
# is the lower half consecutive?
consecutive_low = L[index] == L[start] + (index - start)
if not consecutive_low:
yield from missing_elements(L, start, index)
# is the upper part consecutive?
consecutive_high = L[index] == L[end] - (end - index)
if not consecutive_high:
yield from missing_elements(L, index, end)
def main():
L = [10,11,13,14,15,16,17,18,20]
print(list(missing_elements(L,0,len(L)-1)))
L = range(10, 21)
print(list(missing_elements(L,0,len(L)-1)))
main()