I am looking for a module in sklearn that lets you derive the word-word co-occurrence matrix.
I can get the document-term matrix but not sure how to go about obtain
@titipata I think your solution is not a good metric because we are giving the same weight to real co-ocurrences and to occurrences that are just spurious. For example, if I have 5 texts and the words apple and house appears with this frecuency:
text1: apple:10, "house":1
text2: apple:10, "house":0
text3: apple:10, "house":0
text4: apple:10, "house":0
text5: apple:10, "house":0
The co-occurrence we are going to measure is 10*1+10*0+10*0+10*0+10*0=10, but is just spurious.
And, in this another important cases, like the following:
text1: apple:1, "banana":1
text2: apple:1, "banana":1
text3: apple:1, "banana":1
text4: apple:1, "banana":1
text5: apple:1, "banana":1
we are going to get just a co-occurrence of 1*1+1*1+1*1+1*1=5, when in fact that co-occurrence really important.
@Guiem Bosch In this case co-occurrences are measured only when the two words are contiguous.
I propose to use something the @titipa solution to compute the matrix:
Xc = (Y.T * Y) # this is co-occurrence matrix in sparse csr format
where, instead of using X, use a matrix Y with ones in positions greater than 0 and zeros in another positions.
Using this, in the first example we are going to have: co-occurrence:1*1+1*0+1*0+1*0+1*0=1 and in the second example: co-occurrence:1*1+1*1+1*1+1*1+1*0=5 which is what we are really looking for.