OpenCV 2.4.1 - computing SURF descriptors in Python

后端 未结 2 988
悲哀的现实
悲哀的现实 2020-12-01 03:30

I\'m trying to update my code to use cv2.SURF() as opposed to cv2.FeatureDetector_create(\"SURF\") and cv2.DescriptorExtractor_create(\"SURF\

2条回答
  •  鱼传尺愫
    2020-12-01 03:40

    An improvement of the above algorithm is:

    import cv2
    import numpy
    
    opencv_haystack =cv2.imread('haystack.jpg')
    opencv_needle =cv2.imread('needle.jpg')
    
    ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
    hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)
    
    # build feature detector and descriptor extractor
    hessian_threshold = 85
    detector = cv2.SURF(hessian_threshold)
    (hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
    (nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)
    
    # extract vectors of size 64 from raw descriptors numpy arrays
    rowsize = len(hdescriptors) / len(hkeypoints)
    if rowsize > 1:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
        #print hrows.shape, nrows.shape
    else:
        hrows = numpy.array(hdescriptors, dtype = numpy.float32)
        nrows = numpy.array(ndescriptors, dtype = numpy.float32)
        rowsize = len(hrows[0])
    
    # kNN training - learn mapping from hrow to hkeypoints index
    samples = hrows
    responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
    #print len(samples), len(responses)
    knn = cv2.KNearest()
    knn.train(samples,responses)
    
    # retrieve index and value through enumeration
    for i, descriptor in enumerate(nrows):
        descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
        #print i, descriptor.shape, samples[0].shape
        retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
        res, dist =  int(results[0][0]), dists[0][0]
        #print res, dist
    
        if dist < 0.1:
            # draw matched keypoints in red color
            color = (0, 0, 255)
        else:
            # draw unmatched in blue color
            color = (255, 0, 0)
        # draw matched key points on haystack image
        x,y = hkeypoints[res].pt
        center = (int(x),int(y))
        cv2.circle(opencv_haystack,center,2,color,-1)
        # draw matched key points on needle image
        x,y = nkeypoints[i].pt
        center = (int(x),int(y))
        cv2.circle(opencv_needle,center,2,color,-1)
    
    cv2.imshow('haystack',opencv_haystack)
    cv2.imshow('needle',opencv_needle)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    You can uncomment the print statements to get a better idea about the data structures used.

提交回复
热议问题