I have a 128-bit unsigned integer A and a 64-bit unsigned integer B. What\'s the fastest way to calculate A % B
- that is the (64-bit) remainder from dividing A
I'd like to share a few thoughts.
It's not as simple as MSN proposes I'm afraid.
In the expression:
(((AH % B) * ((2^64 - B) % B)) + (AL % B)) % B
both multiplication and addition may overflow. I think one could take it into account and still use the general concept with some modifications, but something tells me it's going to get really scary.
I was curious how 64 bit modulo operation was implemented in MSVC and I tried to find something out. I don't really know assembly and all I had available was Express edition, without the source of VC\crt\src\intel\llrem.asm, but I think I managed to get some idea what's going on, after a bit of playing with the debugger and disassembly output. I tried to figure out how the remainder is calculated in case of positive integers and the divisor >=2^32. There is some code that deals with negative numbers of course, but I didn't dig into that.
Here is how I see it:
If divisor >= 2^32 both the dividend and the divisor are shifted right as much as necessary to fit the divisor into 32 bits. In other words: if it takes n digits to write the divisor down in binary and n > 32, n-32 least significant digits of both the divisor and the dividend are discarded. After that, the division is performed using hardware support for dividing 64 bit integers by 32 bit ones. The result might be incorrect, but I think it can be proved, that the result may be off by at most 1. After the division, the divisor (original one) is multiplied by the result and the product subtracted from the dividend. Then it is corrected by adding or subtracting the divisor if necessary (if the result of the division was off by one).
It's easy to divide 128 bit integer by 32 bit one leveraging hardware support for 64-bit by 32-bit division. In case the divisor < 2^32, one can calculate the remainder performing just 4 divisions as follows:
Let's assume the dividend is stored in:
DWORD dividend[4] = ...
the remainder will go into:
DWORD remainder;
1) Divide dividend[3] by divisor. Store the remainder in remainder.
2) Divide QWORD (remainder:dividend[2]) by divisor. Store the remainder in remainder.
3) Divide QWORD (remainder:dividend[1]) by divisor. Store the remainder in remainder.
4) Divide QWORD (remainder:dividend[0]) by divisor. Store the remainder in remainder.
After those 4 steps the variable remainder will hold what You are looking for. (Please don't kill me if I got the endianess wrong. I'm not even a programmer)
In case the divisor is grater than 2^32-1 I don't have good news. I don't have a complete proof that the result after the shift is off by no more than 1, in the procedure I described earlier, which I believe MSVC is using. I think however that it has something to do with the fact, that the part that is discarded is at least 2^31 times less than the divisor, the dividend is less than 2^64 and the divisor is greater than 2^32-1, so the result is less than 2^32.
If the dividend has 128 bits the trick with discarding bits won't work. So in general case the best solution is probably the one proposed by GJ or caf. (Well, it would be probably the best even if discarding bits worked. Division, multiplication subtraction and correction on 128 bit integer might be slower.)
I was also thinking about using the floating point hardware. x87 floating point unit uses 80 bit precision format with fraction 64 bits long. I think one can get the exact result of 64 bit by 64 bit division. (Not the remainder directly, but also the remainder using multiplication and subtraction like in the "MSVC procedure"). IF the dividend >=2^64 and < 2^128 storing it in the floating point format seems similar to discarding least significant bits in "MSVC procedure". Maybe someone can prove the error in that case is bound and find it useful. I have no idea if it has a chance to be faster than GJ's solution, but maybe it's worth it to try.