I\'ve read some explanations of how autocorrelation can be more efficiently calculated using the fft of a signal, multiplying the real part by the complex conjugate (Fourier
Just like you stated, take the fft and multiply pointwise by its complex conjugate, then use the inverse fft (or in the case of cross-correlation of two signals: Corr(x,y) <=> FFT(x)FFT(y)*)
x = rand(100,1);
len = length(x);
%# autocorrelation
nfft = 2^nextpow2(2*len-1);
r = ifft( fft(x,nfft) .* conj(fft(x,nfft)) );
%# rearrange and keep values corresponding to lags: -(len-1):+(len-1)
r = [r(end-len+2:end) ; r(1:len)];
%# compare with MATLAB's XCORR output
all( (xcorr(x)-r) < 1e-10 )
In fact, if you look at the code of xcorr.m, that's exactly what it's doing (only it has to deal with all the cases of padding, normalizing, vector/matrix input, etc...)