So the obvious way to transpose a matrix is to use :
for( int i = 0; i < n; i++ )
for( int j = 0; j < n; j++ )
destination[j+i*n] = sourc
Steve Jessop mentioned a cache oblivious matrix transpose algorithm. For the record, I want to share an possible implementation of a cache oblivious matrix transpose.
public class Matrix {
protected double data[];
protected int rows, columns;
public Matrix(int rows, int columns) {
this.rows = rows;
this.columns = columns;
this.data = new double[rows * columns];
}
public Matrix transpose() {
Matrix C = new Matrix(columns, rows);
cachetranspose(0, rows, 0, columns, C);
return C;
}
public void cachetranspose(int rb, int re, int cb, int ce, Matrix T) {
int r = re - rb, c = ce - cb;
if (r <= 16 && c <= 16) {
for (int i = rb; i < re; i++) {
for (int j = cb; j < ce; j++) {
T.data[j * rows + i] = data[i * columns + j];
}
}
} else if (r >= c) {
cachetranspose(rb, rb + (r / 2), cb, ce, T);
cachetranspose(rb + (r / 2), re, cb, ce, T);
} else {
cachetranspose(rb, re, cb, cb + (c / 2), T);
cachetranspose(rb, re, cb + (c / 2), ce, T);
}
}
}
More details on cache oblivious algorithms can be found here.