I have a basic stream processing flow which looks like
master topic -> my processing in a mapper/filter -> output topics
and I am won
For the processing logic you could take this approach:
someKStream
.mapValues(inputValue -> {
// for each execution the below "return" could provide a different class than the previous run!
// e.g. "return isFailedProcessing ? failValue : successValue;"
// where failValue and successValue have no related classes
return someObject; // someObject class vary at runtime depending on your business
}) // here you'll have KStream -> yes, Object for the value!
// you could have a different logic for choosing
// the target topic, below is just an example
.to((k, v, recordContext) -> v instanceof failValueClass ?
"dead-letter-topic" : "success-topic",
// you could completelly ignore the "Produced" part
// and rely on spring-boot properties only, e.g.
// spring.kafka.streams.properties.default.key.serde=yourKeySerde
// spring.kafka.streams.properties.default.value.serde=org.springframework.kafka.support.serializer.JsonSerde
Produced.with(yourKeySerde,
// JsonSerde could be an instance configured as you need
// (with type mappings or headers setting disabled, etc)
new JsonSerde<>()));
Your classes, though different and landing into different topics, will serialize as expected.
When not using to()
, but instead one wants to continue with other processing, he could use branch()
with splitting the logic based on the kafka-value class; the trick for branch()
is to return KStream
in order to further allow one to cast to the appropriate class the individual array items.