Say I have a dataframe with 3 columns: Date, Ticker, Value (no index, at least to start with). I have many dates and many tickers, but each (ticker, date) tupl
Here is a solution that builds on what @behzad.nouri wrote, but using pd.IndexSlice:
df = df.set_index(['ticker', 'date']).sort_index()[['value']]
df['diff'] = np.nan
idx = pd.IndexSlice
for ix in df.index.levels[0]:
df.loc[ idx[ix,:], 'diff'] = df.loc[idx[ix,:], 'value' ].diff()
For:
> df
date ticker value
0 63 C 1.65
1 88 C -1.93
2 22 C -1.29
3 76 A -0.79
4 72 B -1.24
5 34 A -0.23
6 92 B 2.43
7 22 A 0.55
8 32 A -2.50
9 59 B -1.01
It returns:
> df
value diff
ticker date
A 22 0.55 NaN
32 -2.50 -3.05
34 -0.23 2.27
76 -0.79 -0.56
B 59 -1.01 NaN
72 -1.24 -0.23
92 2.43 3.67
C 22 -1.29 NaN
63 1.65 2.94
88 -1.93 -3.58