I am reading through the documentation of PyTorch and found an example where they write
gradients = torch.FloatTensor([0.1, 1.0, 0.0001])
y.backward(gradien
Typically, your computational graph has one scalar output says loss. Then you can compute the gradient of loss w.r.t. the weights (w) by loss.backward(). Where the default argument of backward() is 1.0.
If your output has multiple values (e.g. loss=[loss1, loss2, loss3]), you can compute the gradients of loss w.r.t. the weights by loss.backward(torch.FloatTensor([1.0, 1.0, 1.0])).
Furthermore, if you want to add weights or importances to different losses, you can use loss.backward(torch.FloatTensor([-0.1, 1.0, 0.0001])).
This means to calculate -0.1*d(loss1)/dw, d(loss2)/dw, 0.0001*d(loss3)/dw simultaneously.