I\'m reading about functional programming and I\'ve noticed that Pattern Matching is mentioned in many articles as one of the core features of functional languages.
Pattern matching allows you to match a value (or an object) against some patterns to select a branch of the code. From the C++ point of view, it may sound a bit similar to the switch statement. In functional languages, pattern matching can be used for matching on standard primitive values such as integers. However, it is more useful for composed types.
First, let's demonstrate pattern matching on primitive values (using extended pseudo-C++ switch):
switch(num) {
case 1:
// runs this when num == 1
case n when n > 10:
// runs this when num > 10
case _:
// runs this for all other cases (underscore means 'match all')
}
The second use deals with functional data types such as tuples (which allow you to store multiple objects in a single value) and discriminated unions which allow you to create a type that can contain one of several options. This sounds a bit like enum except that each label can also carry some values. In a pseudo-C++ syntax:
enum Shape {
Rectangle of { int left, int top, int width, int height }
Circle of { int x, int y, int radius }
}
A value of type Shape can now contain either Rectangle with all the coordinates or a Circle with the center and the radius. Pattern matching allows you to write a function for working with the Shape type:
switch(shape) {
case Rectangle(l, t, w, h):
// declares variables l, t, w, h and assigns properties
// of the rectangle value to the new variables
case Circle(x, y, r):
// this branch is run for circles (properties are assigned to variables)
}
Finally, you can also use nested patterns that combine both of the features. For example, you could use Circle(0, 0, radius) to match for all shapes that have the center in the point [0, 0] and have any radius (the value of the radius will be assigned to the new variable radius).
This may sound a bit unfamiliar from the C++ point of view, but I hope that my pseudo-C++ make the explanation clear. Functional programming is based on quite different concepts, so it makes better sense in a functional language!