I\'m trying to create a 2d array (which is a six column and lots of rows) with numpy random choice with unique values between 1 and 50 for every row not all of the array
Here is a constructive approach, draw first (50 choices), second (49 choices) etc. For large sets it's quite competitive (pp in table):
# n = 10
# pp 0.18564210 ms
# Divakar 0.01960790 ms
# James 0.20074140 ms
# CK 0.17823420 ms
# n = 1000
# pp 0.80046050 ms
# Divakar 1.31817130 ms
# James 18.93511460 ms
# CK 20.83670820 ms
# n = 1000000
# pp 655.32905590 ms
# Divakar 1352.44713990 ms
# James 18471.08987370 ms
# CK 18369.79808050 ms
# pp checking plausibility...
# var (exp obs) 208.333333333 208.363840259
# mean (exp obs) 25.5 25.5064865
# Divakar checking plausibility...
# var (exp obs) 208.333333333 208.21113972
# mean (exp obs) 25.5 25.499471
# James checking plausibility...
# var (exp obs) 208.333333333 208.313436938
# mean (exp obs) 25.5 25.4979035
# CK checking plausibility...
# var (exp obs) 208.333333333 208.169585249
# mean (exp obs) 25.5 25.49
Code including benchmarking. Algo is a bit complicated because mapping to free spots is hairy:
import numpy as np
import types
from timeit import timeit
def f_pp(n):
draw = np.empty((n, 6), dtype=int)
# generating random numbers is expensive, so draw a large one and
# make six out of one
draw[:, 0] = np.random.randint(0, 50*49*48*47*46*45, (n,))
draw[:, 1:] = np.arange(50, 45, -1)
draw = np.floor_divide.accumulate(draw, axis=-1)
draw[:, :-1] -= draw[:, 1:] * np.arange(50, 45, -1)
# map the shorter ranges (:49, :48, :47) to the non-occupied
# positions; this amounts to incrementing for each number on the
# left that is not larger. the nasty bit: if due to incrementing
# new numbers on the left are "overtaken" then for them we also
# need to increment.
for i in range(1, 6):
coll = np.sum(draw[:, :i] <= draw[:, i, None], axis=-1)
collidx = np.flatnonzero(coll)
if collidx.size == 0:
continue
coll = coll[collidx]
tot = coll
while True:
draw[collidx, i] += coll
coll = np.sum(draw[collidx, :i] <= draw[collidx, i, None], axis=-1)
relidx = np.flatnonzero(coll > tot)
if relidx.size == 0:
break
coll, tot = coll[relidx]-tot[relidx], coll[relidx]
collidx = collidx[relidx]
return draw + 1
def check_result(draw, name):
print(name[2:], ' checking plausibility...')
import scipy.stats
assert all(len(set(row)) == 6 for row in draw)
assert len(set(draw.ravel())) == 50
print(' var (exp obs)', scipy.stats.uniform(0.5, 50).var(), draw.var())
print(' mean (exp obs)', scipy.stats.uniform(0.5, 50).mean(), draw.mean())
def f_Divakar(n):
return np.random.rand(n, 50).argpartition(6,axis=1)[:,:6]+1
def f_James(n):
return np.stack([np.random.choice(np.arange(1,51),size=6,replace=False) for i in range(n)])
def f_CK(n):
return np.array([np.random.choice(np.arange(1, 51), size=6, replace=False) for _ in range(n)])
for n in (10, 1_000, 1_000_000):
print(f'n = {n}')
for name, func in list(globals().items()):
if not name.startswith('f_') or not isinstance(func, types.FunctionType):
continue
try:
print("{:16s}{:16.8f} ms".format(name[2:], timeit(
'f(n)', globals={'f':func, 'n':n}, number=10)*100))
except:
print("{:16s} apparently failed".format(name[2:]))
if(n >= 10000):
for name, func in list(globals().items()):
if name.startswith('f_') and isinstance(func, types.FunctionType):
check_result(func(n), name)