I\'m trying to fit the distribution of some experimental values with a custom probability density function. Obviously, the integral of the resulting function should always b
Following the example above here is more general way to add any constraints:
from scipy.optimize import minimize
from scipy.integrate import quad
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, np.pi, 100)
y = np.sin(x) + (0. + np.random.rand(len(x))*0.4)
def func_to_fit(x, params):
return params[0] + params[1] * x + params[2] * x ** 2 + params[3] * x ** 3
def constr_fun(params):
intgrl, _ = quad(func_to_fit, 0, np.pi, args=(params,))
return intgrl - 2
def func_to_minimise(params, x, y):
y_pred = func_to_fit(x, params)
return np.sum((y_pred - y) ** 2)
# Do the parameter fitting
#without constraints
res1 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y))
params1 = res1.x
# with constraints
cons = {'type': 'eq', 'fun': constr_fun}
res2 = minimize(func_to_minimise, x0=np.random.rand(4), args=(x, y), constraints=cons)
params2 = res2.x
y_fit1 = func_to_fit(x, params1)
y_fit2 = func_to_fit(x, params2)
plt.scatter(x,y, marker='.')
plt.plot(x, y_fit2, color='y', label='constrained')
plt.plot(x, y_fit1, color='g', label='curve_fit')
plt.legend(); plt.xlim(-0.1,3.5); plt.ylim(0,1.4)
plt.show()
print(f"Constrant violation: {constr_fun(params1)}")
Constraint violation: -2.9179325622408214e-10