I came across a case-switch piece of code today and was a bit surprised to see how it worked. The code was:
switch (blah)
{
case a:
break;
case b:
break;
Actually the switch statement works the way you observed. It is designed so that you can combine several cases together until a break is encountered and it acts something like a sieve.
Here is a real-world example from one of my projects:
struct keystore_entry *new_keystore(p_rsd_t rsd, enum keystore_entry_type type, const void *value, size_t size) {
struct keystore_entry *e;
e = rsd_malloc(rsd, sizeof(struct keystore_entry));
if ( !e )
return NULL;
e->type = type;
switch (e->type) {
case KE_DOUBLE:
memcpy(&e->dblval, value, sizeof(double));
break;
case KE_INTEGER:
memcpy(&e->intval, value, sizeof(int));
break;
/* NOTICE HERE */
case KE_STRING:
if ( size == 0 ) {
/* calculate the size if it's zero */
size = strlen((const char *)value);
}
case KE_VOIDPTR:
e->ptr = rsd_malloc(rsd, size);
e->size = size;
memcpy(e->ptr, value, size);
break;
/* TO HERE */
default:
return NULL;
}
return e;
}
The code for KE_STRING and KE_VOIDPTR cases is identical except for the calculation of size in case of string.