The original question was edited (shortened) to focus on a problem of precision, not range.
Single, or double precision, every representation of real number
No.
For example, on my system, the type float can represent values up to approximately 3.40282e+38. As an integer, that would be approximately 340282000000000000000000000000000000000, or about 2128.
The size of float is 32 bits, so it can exactly represent at most 232 distinct numbers.
An integer object generally uses all of its bits to represent values (with 1 bit dedicated as a sign bit for signed types). A floating-point object uses some of its bits to represent an exponent (8 bits for IEEE 32-bit float); this increases its range at the cost of losing precision.
A concrete example (1267650600228229401496703205376.0 is 2100, and is exactly representable as a float):
#include
#include
#include
int main(void) {
float x = 1267650600228229401496703205376.0;
float y = nextafterf(x, FLT_MAX);
printf("x = %.1f\n", x);
printf("y = %.1f\n", y);
return 0;
}
The output on my system is:
x = 1267650600228229401496703205376.0
y = 1267650751343956853325350043648.0
Another way to look at it:
A 32-bit object can represent at most 232 distinct values.
A 32-bit signed integer can represent all integer values in the range -2147483648 .. 2147483647 (-231 .. +231-1).
A 32-bit float can represent many values that a 32-bit signed integer can't, either because they're fractional (0.5) or because they're too big (2.0100). Since there are values that can be represented by a 32-bit float but not by a 32-bit int, there must be other values that can be represented by a 32-bit int but not by a 32-bit float. Those values are integers that have more significant digits than a float can handle, because the int has 31 value bits but the float has only about 24.